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Abstract: Capture–recapture methods, originally developed for estimating demographic
parameters of animal populations, have been applied to human populations. In epidemi-
ology and health sciences, most surveillance studies and prevalence surveys based on
multiple records of incomplete lists are likely to miss some cases, and thus the number
of ascertained cases in the final merged list tends to undercount the true size of the target
population. Capture–recapture methods can be applied for these types of studies/surveys
to provide useful estimators for the size of the target population and adjust for under-
ascertainment. This article describes the history of the method and focuses on population
size estimation based on the sample-coverage approach, which also provides measures to
quantify the extent of overlapping information and assess the dependences among sam-
ples. The R package CARE1 (CApture–REcapture, part 1) is applied to two real examples
for illustration. Other models are briefly discussed.

In a typical capture–recapture experiment in the biological sciences, we place traps or nets in the study area
and sample the population several times. In the first trapping sample, a number of animals are captured; the
animals are uniquely tagged or marked and released into the population. Then, in each subsequent trapping
sample, we record and attach a unique tag to every unmarked animal, record the capture of any animal
that has been previously tagged, and return all animals to the population. At the end of the experiment,
the complete capture history for each animal is known. Such experiments are also called mark–recapture,
tag–recapture, and multiple-record systems in the literature. The simplest type only includes two samples:
one is the capture sample and the other the recapture sample. This special two-sample case is often referred
to as a dual system or a dual-record system in the context of census undercount estimation.

The capture–recapture technique has been used to estimate demographic parameters for animal pop-
ulations. Biologists have long recognized that it would be unnecessary and almost impossible to count
every animal in order to obtain an accurate estimate of population size. The recapture information (or the
proportion of repeated captures) by marking or tagging plays an important role because it can be used
to estimate the number missing in the samples under proper assumptions. Intuitively, when recaptures in
subsequent samples are few, we know that the population size is much higher than the number of distinct
captures. However, if the recapture rate is quite high, then we are likely to have caught most of the animals.
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Capture-Recapture for Human Populations

The basic idea of the two-sample capture–recapture technique can be traced back to a 1786 paper by
Pierre Simon Laplace, who used it to estimate the population size of France in 1802[1,2], and even earlier to
John Graunt who used the idea to estimate the effect of plague on the population size of England around
1600[3]. The earliest applications to ecology include Petersen’s and Dahl’s work on fish populations in 1896
and 1917, respectively, and Lincoln’s use of band returns to estimate waterfowl population in 1930. Two-
sample models were extended to the multiple-sample case in 1938 by Schnabel[4]. So a multiple-sample
capture–recapture experiment is also referred to as the Schnabel census. More sophisticated statistical
theory and inference procedures have been proposed since the paper by Darroch[5], who founded the
mathematical framework of this topic. See Refs 2, 6–13 for the historical developments, methodologies,
and applications.

The models in animal populations are generally classified as either closed or open. In a closed model,
the size of a population, which is of main interest, is assumed to be constant over the trapping times. The
closure assumption is usually valid for data collected in a relatively short time during a nonbreeding season.
In an open model, recruitment (birth or immigration) and losses (death or emigration) are allowed. It is
usually used to model the data from long-term investigations of animals or migrating birds. In addition
to the population size at each sampling time, the parameters of interest also include the survival rates
and number of births between sampling times. Here, we concentrate on closed models because of their
applications to human populations.

1 Applications to Epidemiology and Health Sciences

Traditionally, epidemiologists and researchers in health sciences have attempted to enumerate all relevant
cases to obtain the prevalence rates for various diseases. When multiple lists of cases ascertained by differ-
ent methods are available, cases in various lists are usually merged and duplicate cases are eliminated. The
overlapping information is thus ignored. This typical approach assumes complete ascertainment and does
not correct or adjust for underascertainment. As LaPorte et al.[14] indicated, the traditional public health
approaches for counting the number of occurrences of diseases are too inaccurate (surveillance), too costly
(population-based registries), or too late (death certificates) for broad monitoring (see Disease Registers:
Overview; Disease Registers: Basic). Most prevalence surveys merging several records of lists are likely
to miss some cases and thus the number of cases in the merged list will be negatively biased[15–18].

The capture–recapture model has been applied to epidemiology and related sciences under the term
multiple-record systems because most applications estimate the size of a certain target population by merg-
ing several existing but incomplete lists of names of the target population[19]. In this method, researchers
count incidence of a disease in human populations much as ecologists and biologists count animals. A
pioneering paper is that of Sekar and Deming[20], who used two samples to estimate the birth and death
rates in India during 1945 and 1946. Wittes and Sidel[21] were the first to use three-sample records to
estimate the number of hospital patients. Subsequent developments and applications were reviewed in
Refs 17–19, 22. The applications cover a wide range of areas: birth defects (see Birth Defect Registries),
cancers (see Cancer Registries), drug use, infectious diseases, injuries, diabetes, and mental illness among
others[17–19,23]. The applications also extend to the size estimation of the elusive target populations in
social studies; examples are populations of criminals, the homeless, and those with sensitive antisocial or
stigmatized behaviors, or incidence of family violence, child prostitution, and drug abuse[23,24,25].

The framework to model multiple-record systems for human populations is similar to that of a closed
capture–recapture setup for wildlife estimation: Each list (or sample) is regarded as a trapping sample and
identification numbers and/or names are used as “tags”. The “capture in a sample” corresponds to “being
recorded or identified in a list”, and “capture probability” becomes “ascertainment probability”. Two major
differences between wildlife and human applications are (i) there are more trapping samples in wildlife
studies, whereas in human studies only a few lists are available, and (ii) in animal studies, there is a natural

Wiley StatsRef: Statistics Reference Online, © 2014–2015 John Wiley & Sons, Ltd.
This article is © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat04855.pub2

2



Capture-Recapture for Human Populations

temporal or sequential time order in the trapping samples, whereas for epidemiological data such order
does not exist in the lists, or the order may be different for some individuals[22]. Researchers in wildlife and
human applications have, respectively, developed models and methodologies along separate lines. Various
models/approaches are discussed after the data structure and assumptions are explained.

2 Data Structure and Assumptions

We first present the notation. Let the true unknown population size (i.e., the number of individuals in
the target population) be N and all individuals can be conceptually indexed by 1, 2,… , N . There are t
samples (lists, records, or sources) and they are indexed by 1, 2,… , t. Ascertainment data for all identified
individuals are usually aggregated into a categorical data form. Denote Zs1s2 … st

as the number of individuals
in the category s1s2 … st, where sj = 0 denotes absence (noncapture) and sj = 1 denotes presence (capture)
in the jth list. There are M identified individuals, that is, M equals to the sum of all observable cell counts.
Denote nj, j= 1, 2,… , t, as the number of individuals identified in the jth list.

We give in Table 1 a three-list hepatitis A virus (HAV) example[22] for illustration. The purpose of this
study was to estimate the number of people who were infected by hepatitis in an outbreak that occurred in
and around a college in northern Taiwan from April to July 1995. Our data are restricted to those records
from students of that college. A total of M = 271 cases were reported from the following three sources:
(i) P-list (n1 = 135 cases): records based on a serum test conducted by the Institute of Preventive Medicine
of Taiwan. (ii) Q-list (n2 = 122 cases): records reported by the National Quarantine Service based on cases
reported by the doctors of local hospitals. (iii) E-list (n3 = 126 cases): records based on questionnaires
collected by epidemiologists.

In Table 1, there are seven observed cells or categories with counts Z100, Z010, Z001, Z110, Z011, Z101, and
Z111. Here, Z111 = 28 means that there were 28 people recorded on all three lists; Z100 = 69 means that
69 people were recorded on list P only. A similar interpretation pertains to other records. There is one
missing cell, Z000, the number of uncounted. The purpose is to predict Z000 or equivalently to estimate the
total population size N (=M +Z000).

Similar notation and interpretations can be extended to data with more than three lists. As is explained
in Section 6, the HAV data represent a data set with relatively low overlapping fraction. We also give a
four-list diabetes data with high overlapping fraction. The 15 observed categories with counts are shown
in Table 2. These data were collected by Bruno et al.[26] in a community in Italy based on the following
four records: diabetic clinic and/or family physician visits (List 1 with n1 = 1754 cases), hospital discharges
(List 2 with n2 = 452 cases), prescriptions (List 3 with n3 = 1135 cases), and purchases of reagent strips
and insulin syringes (List 4 with n4 = 173 cases). A total of M = 2069 cases were identified. Despite the

Table 1. Data on Hepatitis A virus[22].

Hepatitis A virus list

P Q E Data

1 1 1 Z111 = 28
1 1 0 Z110 = 21
1 0 1 Z101 = 17
1 0 0 Z100 = 69
0 1 1 Z011 = 18
0 1 0 Z010 = 55
0 0 1 Z001 = 63
0 0 0 Z000 = ??
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Table 2. Data on diabetes[26].

Diabetes list

1 2 3 4 Data

1 1 1 1 Z1111 = 58
1 1 1 0 Z1110 = 157
1 1 0 1 Z1101 = 18
1 1 0 0 Z1100 = 104
1 0 1 1 Z1011 = 46
1 0 1 0 Z1010 = 650
1 0 0 1 Z1001 = 12
1 0 0 0 Z1000 = 709
0 1 1 1 Z0111 = 14
0 1 1 0 Z0110 = 20
0 1 0 1 Z0101 = 7
0 1 0 0 Z0100 = 74
0 0 1 1 Z0011 = 8
0 0 1 0 Z0010 = 182
0 0 0 1 Z0001 = 10
0 0 0 0 Z0000 = ??

active identification, Bruno et al. concluded that there were still some people who could not be identified.
The purpose was then to estimate the number of missing diabetes patients and to adjust for undercount.

The basic assumptions include the following: (i) All individuals act independently. (ii) Interpretation or
definition of the characteristic of the target population should be consistent for all data sources. (iii) For
all sources, identification marks are correctly recorded and matched. (iv) The size of the population is
approximately a constant during the study period. (v) Any individual must have a positive probability to be
ascertained by any source; any nonascertainment is purely due to a small ascertainment probability rather
than impossibility. (When a random sample is feasible, this assumption can be relaxed and some special
types of structural zeros are permitted; see Section 3.)

Traditional approaches assume that the samples are independent (see Statistical Independence).
As individuals can be cross classified according to their capture or noncapture in each list, the inde-
pendence for two samples is usually interpreted from a Two by Two Contingency Tables in human
applications[27]. This independence assumption in animal studies is expressed in terms of the more
restrictive “equal-catchability assumption”: all animals have the same probability of capture in each
sample. In our context, this becomes an assumption of “equal-ascertainment probability”. However, this
assumption is rarely valid in most applications. Lack of independence among samples leads to a bias
(correlation bias) for the usual estimators derived under the independence assumption. The correlation
bias may be caused by the following two sources[22]:

1. Local dependence among lists within each individual (or substratum): that is, inclusion in one sample
has a direct causal effect on any individual’s inclusion in other samples. For example, an individual
with a positive for the serum test of hepatitis is more likely to go to the hospital for treatment and thus
the probability of being identified in local hospital records is larger than that of the same individual
given as negative by the serum test. Therefore, the “capture” of the serum test and the “capture” of
hospital records become positively dependent.

2. Heterogeneity among individuals (or substrata): even if the two lists are independent within indi-
viduals, the ascertainment of the two lists may become dependent if the capture probabilities are
heterogeneous among individuals. This phenomenon is similar to Simpson’s paradox in categorical
data analysis. That is to say, aggregating multiple independent 2× 2 tables might result in a dependent
table. Hook and Regal[28] provided an example.
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The above two types of dependences are usually confounded (see Confounding) and cannot be easily
disentangled in a data analysis without further assumptions or without more information.

3 Two-Sample Analysis

The two-sample case is the origin of capture–recapture methodology. Even if there are more than two lists,
the analysis of any pair of lists provides useful preliminary information about the dependence between sam-
ples; see later. The intuitive idea for two-sample analysis in animal populations is the following[2]: Assume
that a first sample of n1 animals is captured, marked, and released back to the population. Thus, the marked
rate in the population is n1/N , with N unknown. A second sample of n2 animals is subsequently drawn
and there are m2 previously marked. Equating the proportion of the marked rate in the population to the
marked rate in the second sample suggests that m2/n2 ≈ n1/N , which yields the following Petersen estimator
(or the Petersen–Lincoln estimator) for the population size:

N̂P = n1n2∕m2 (1)

On the basis of a hypergeometric model (in which n1 and n2 are regarded as fixed), Chapman[29] derived
the following estimator to adjust the bias that arises mainly because of a small value of m2:

Ñ = (n1 + 1)(n2 + 1)∕(m2 + 1) − 1 (2)

Under the same hypergeometric model, both estimators have approximately the same variance given by

VarÑ ≈ (n1 + 1)(n2 + 1)(n1 − m2)(n2 − m2)∕[(m2 + 1)2(m2 + 2)] (3)

As the Petersen and Chapman estimates are typically skewed, a log transformation has been used to
obtain a confidence interval for population size[30]. For example, for the Chapman estimator, we assume
that log(Ñ −M) follows a normal distribution, implying the 95% confidence interval for the Chapman
estimator with an estimated variance given in Equation (3) can be constructed as follows:

[M + (Ñ − M)∕C,M + (Ñ − M) × C] (4)

where

C = exp

⎧⎪⎪⎨⎪⎪⎩
1.96

√√√√√√√log
⎡⎢⎢⎢⎣1 + var Ñ(

Ñ − M
)2

⎤⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

The lower bound of this interval is always greater than the number of different animals actually captured
in the experiment. The confidence interval can be applied not only to the Chapman estimator but also to
any other population size estimators.

A critical assumption for the validity of the Petersen and Chapman estimators is that the two samples are
independent. As described in Section 2, local dependence among lists and unequal catchabilities among
individuals are two sources of dependences that lead to correlation bias. For example, if the two samples
are positively correlated (because animals exhibit a trap-happy behavioral response or if individual hetero-
geneity exists and is consistent over sampling occasions), then the animals captured in the first sample are
more easily caught in the second sample. Thus, the recapture rate (m2/n2) in the second sample tends to be
larger than the true proportion of marked animals in the population n1/N . Then it is expected that m2/n2 >

n1/N , which yields N > n1n2∕m2 = N̂P. As a result, the Petersen estimator tends to underestimate the true
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size. Conversely, it tends to overestimate when two samples are negatively correlated. Similar arguments
and conclusions are also valid for more than two capture occasions. The bias direction has an important
implication: if the Petersen or Chapman estimates for any two samples are relatively high (low) compared
to other pairwise estimates, then it indicates that the two samples are negatively (positively) dependent.
The bias is quantified in Section 4.2 in terms of a dependence measure between the two samples.

When only two lists are available, three cells are observable: people identified in List 1 only, people iden-
tified in List 2 only, and people listed in both. However, there are four parameters: N , two mean capture
probabilities, and a dependence measure. The data are insufficient for estimating dependence unless addi-
tional information or covariates are available. All existing methods for two lists unavoidably encounter this
problem and adopt the independence assumption. This independence assumption has become the main
weak point in the use of the capture–recapture method for two lists, that is, the Petersen estimator is sub-
ject to correlation bias (unless in some special cases as described later). Generally, at least three lists are
required to model dependences among lists.

If one of the two lists can be obtained by a random manner (i.e., all individuals in the target population
have approximately the same probability to be ascertained in that list), then heterogeneity among individu-
als in the other sample would not cause any correlation bias to the Petersen estimator; see Section 4.2 for a
justification. In this case, the other list can be highly selective or heterogeneous with structural zeros.[22,27]

Further, if there is a temporal ordering for the two lists (say, the second list is obtained after the first list),
then correlation bias also vanishes when the second list is random. This is because in such a case the homo-
geneity of the ascertainment probabilities of the second sample implies no local dependence. All these can
be intuitively explained by animal experiments[22] and justified by theory in Section 4.2.

When there are more than two lists, a variety of models incorporating dependence among samples have
been proposed in the literature. Generally, there are three classes of models, the ecological model, the
Log-linear Models in Contingency Tables, and the sample coverage approach, that allow for the above
two types of dependences. We focus in Section 4 on the sample coverage models and briefly discuss the
other two classes of models in Section 5 because the two classes are reviewed in other articles (see Related
Articles).

4 Sample Coverage Approach (>2 Samples)

4.1 Sample Coverage: Quantifying Overlapping Fraction

For multiple-record systems, the overlapping information among lists, like the recapture proportion in
animal populations, provides essential information in inferring population size. The sample coverage
approach was motivated to provide population size estimators based on measures that quantify the extent
of overlapping information and also the dependence among lists. This approach was proposed by Chao
and Tsay[31] for the three-list case. The extension to a general case was presented by Tsay and Chao[32] and
in a tutorial article with examples[22].

The concept of sample coverage (or simply “coverage”) for a single sample was originally developed
for cryptographic analyses during World War II by the founder of modern computer science, Alan
Turing, and by his colleague I. J. Good[33,34]. The concept has been widely applied to the estimation of
species richness[35] and animal abundances[7,9]. It was also adapted to the context of multiple records
systems[22,31,32] to quantify objectively the extent of overlapping information among lists. For multiple
samples, a more proper term for “sample coverage” is overlapping fraction or joint coverage of samples as
will be clear in the formulation of the concept. However, in order to be consistent with previous papers, we
still retain the use of the term sample coverage in the following review, but will use this and overlapping
fraction interchangeably.

Wiley StatsRef: Statistics Reference Online, © 2014–2015 John Wiley & Sons, Ltd.
This article is © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat04855.pub2

6



Capture-Recapture for Human Populations

The ascertainment data for all individuals can be expressed as a matrix (Xij), where Xij = I[the ith indi-
vidual is captured in Sample j], i= 1, 2,… , N and j= 1, 2,… , t, and I[•] denotes an indicator function.
We assume for the ith individual that the probability of the records (Xi1, Xi2,… , Xit) is determined by its
ascertainment probability. Let Pij be the ascertainment probability of the ith individual in the jth list given
the records of other lists. Here, Pij may depend on the records of other lists if local dependence exists within
individual i. Consider the three-list case first. The sample coverage (or overlapping fraction) of List 1 given
the records of the other lists, C(L1|L2, L3), is defined as the probability that a case which can be potentially
recorded by the ascertainment method for List 1 is shared with at least one of the other given lists. The
mathematical expression is

C(L1|L2, L3) =

∑N

i=1
Pi1 I(Xi2 + Xi3 > 0)∑N

i=1
Pi1

(5)

This quantifies the joint coverage or overlapping information between List 1 and the merged list of Lists 2
and 3. The sample coverage of all three available lists is defined as the average of the sample coverages of
individual lists:

C = 1
3
[C(L1|L2, L3) + C(L2|L1, L3) + C(L3|L1, L2)] (6)

Contrary to most people’s intuition, multi-list sample coverage can be very accurately and efficiently
estimated using only information contained in the sample itself[31], as long as the sample is reasonably
large. Consider the estimation of C(L1|L2, L3) in Equation (5) in the following intuitive way. Any case in
List 1 must be in one of the four categories (100), (101), (110), and (111). All cases in the latter three
categories overlap with at least one of the other lists, implying that the overlapping fraction of List 1 can
be estimated as (Z110 +Z101 +Z111)/n1 = 1−Z100/n1. Similar estimators can be obtained for Lists 2 and 3.
Thus, the estimated sample coverage is expressed as an average (over three lists) of the three fractions:

Ĉ = 1
3

[(
1 −

Z100
n1

)
+
(

1 −
Z010
n2

)
+
(

1 −
Z001
n3

)]
= 1 − 1

3

[Z100
n1

+
Z010
n2

+
Z001
n3

]
(7)

Note that Z100, Z010, and Z001 are the numbers of individuals recorded only in one list (i.e., singletons).
Singletons do not contain any overlapping information. The second expression in Equation (7) shows that
sample coverage estimator is the one-complement of the average of fractions of singletons. Similar esti-
mators can be obtained for the general t-sample cases.

4.2 CCV Measures: Quantifying Dependences among Samples

In the sample coverage approach, dependence among samples is modeled by the coefficient of covariation
(CCV) for two or more samples. This is an extension of the “coefficient of variation” of one sample to
multiple samples. The dependence measure CCV between Samples j and k is defined as

𝛾jk = 1
N

N∑
i=1

E[(Xij − 𝜇j)(Xik − 𝜇k)]
𝜇j𝜇k

= 1
N

N∑
i=1

E(XijXik)
𝜇j𝜇k

− 1 (8)

where 𝜇j =E(nj)/N denotes the mean probability of being listed in the jth sample. The magnitude of 𝛾 jk
measures the degree of dependence between Samples j and k. Two samples are independent if and only if
𝛾 jk = 0. Two samples are positively (negatively) dependent if 𝛾 jk > 0 (𝛾 jk < 0). From the second expression
in Equation (8), positive (negative) dependence means that the average probability of jointly being listed
in the two samples is greater (less) than that in the independent case (i.e., 𝜇j𝜇k).
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The relative bias of the Petersen estimator (bias divided by the estimate) for Samples j and k is approxi-
mately −𝛾 jk

[20,31]. That is, we can quantify the correlation bias of the Petersen estimator:

Correlation bias = E(N̂P) − N ≈ −𝛾jk E(N̂P) (9)

This gives a theoretical justification that the Petersen estimator overestimates when two samples are
negatively correlated, whereas it underestimates when two samples are positively correlated, as stated
in Section 3. Moreover, consider the special case that there is no local dependence. Let the two sets of
probabilities, {Pij; i= 1, 2,… , N} and {Pik; i= 1, 2,… , N}, denote the ascertainment probabilities of N
individuals for Samples j and k, respectively. In this special case, the two heterogeneous samples are inde-
pendent if and only if 𝛾 jk = 0, that is, N−1

∑N

i=1
PijPik = 𝜇j𝜇k , which means that the covariance between the

two sets of probabilities is zero. Thus, if one sample is random so that the set of probabilities for that sample
is homogeneous, then it suffices to assure independence of the two samples provided no local dependence
exists; the other nonrandom sample can be heterogeneous with structural zeros.

The CCV measure can be similarly defined for more than two samples. For example, the CCV measure
for three samples, j, k, and m, is defined as

𝛾jkm = 1
N

N∑
i=1

E[(Xij − 𝜇j)(Xik − 𝜇k)(Xim − 𝜇m)]
𝜇j𝜇k𝜇m

(10)

In the independent case, dependence measures of any number of samples are zero.

4.3 Coverage-based Population Size Estimators

Notice that if neither local dependence nor heterogeneity exists, then the sample coverage defined in
Equation (6) reduces to C =D/N , where

D = 1
3
[(M − Z100) + (M − Z010) + (M − Z001)] = M − 1

3
(Z100 + Z010 + Z001) (11)

Here, (Z100 +Z100 +Z100)/3 represents the average of the non-overlapping cases. Thus, D can be inter-
preted as the average (over three lists) of the shared or overlapping cases. We summarize the following
estimation procedures for the three-list case.

When the three sources are independent so that all dependence measures are zero, we have
N =E(D)/E(C), implying a simple population size estimator[31]:

N̂0 = D∕Ĉ (12)

It can also be intuitively thought of as the ratio of overlapping cases to overlapping fraction. Here, the
sample coverage estimator Ĉ is given in Equation (7).

When dependence exists among samples, Chao et al.[31] took into account the dependences and derived
an adjustment formula to adjust the above simple estimator N̂0 based on a function of two-sample CCVs.
Inferences of population size depend on whether data contain sufficient overlapping information:

1. If data contain sufficient overlapping information, the following explicit size estimator is suggested
with a bootstrap standard error (s.e.) described farther below:

N̂ =
[Z+11 + Z1+1 + Z11+

3Ĉ

]
÷

{
1 − 1

3Ĉ

[(
Z1+0 + Z+10

)
Z11+

n1n2
+

(Z10+ + Z+01)Z1+1

n1n3
+

(Z0+1 + Z01+)Z+11

n2n3

]}
(13)
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Here, a rough guideline about the condition “sufficient overlapping information” is that the estimated
sample coverage Ĉ should be at least 55% and the estimated bootstrap s.e. of N̂ is less than one-third of
the population size estimate. A general property about the explicit estimator N̂ is that the correlation
bias relative to N is negligible when there is no three-sample dependence[18]. When there is no local
dependence, the relative correlation bias also vanishes if individual heterogeneity follows a gamma
distribution, which covers a wide range of heterogeneity types[31].

2. For relatively low sample coverage (<55%) case or the estimated bootstrap s.e. of N̂ exceeds one-third
of the population size estimate, data do not contain sufficient information to accurately estimate the
population size. In this case, the following “one-step” estimator N̂1 is suggested: (The estimator is
called one-step because it is obtained by one iterative step from the adjustment formula[22])

N̂1 = D
Ĉ

+ 1
3Ĉ

[(Z1+0 + Z+10)𝛾̂12 + (Z10+ + Z+01)𝛾̂13 + (Z01+ + Z0+1)𝛾̂23] (14)

where the CCV estimates are

𝛾̂12 = N̂ ′
Z11+

n1n2
− 1, 𝛾̂13 = N̂ ′

Z1+1

n1n3
− 1, 𝛾̂23 = N̂ ′

Z+11

n2n3
− 1 (15)

and

N̂ ′ = D
Ĉ

+ 1
3Ĉ

[(
Z1+0 + Z+10

)(D
Ĉ

⋅
Z11+

n1n2
− 1

)
+ (Z10+ + Z+01)

(
D
Ĉ

⋅
Z1+1

n1n3
− 1

)
+
(
Z01+ + Z0+1

)(D
Ĉ

⋅
Z+11

n2n3
− 1

)]
This one-step estimator can be regarded as a lower (upper) bound for positively (negatively) dependent
samples. Most data sets used in epidemiological applications tend to have a net positive dependence.
Thus, the one-step estimator is often used as a lower bound.

The above three population size estimators (N̂0, N̂ , N̂1) are referred to as the sample coverage population
size estimators. A bootstrap method (see Bootstrap with Examples) was proposed[31] to obtain estimated
s.e. for each of the above three estimators, and to construct the resulting 95% confidence interval using
a log transformation as in Equation (4). A relatively low overlapping fraction means that there are many
singletons, and consequently a large s.e. is usually associated with the estimator N̂ in Equation (13).

The estimation procedure and related properties for the general t-sample case are parallel to those for
the three-sample case[22,32]. All coverage-based population size estimators and statistics can be obtained
from the R package CARE1; see Section 6.

5 Other Models

5.1 Ecological Models

Pollock proposed a sequence of models mainly for wildlife studies to relax the equal-catchability
assumption[36]. This approach models the dependences by specifying various forms of capture probability.
The basic models include (i) model Mt, which allows capture probabilities to vary with time; (ii) model
Mb, which allows behavioral responses to capture; and (iii) model Mh, which allows heterogeneous animal
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capture probabilities. Various combinations of these three types of unequal capture probabilities (i.e.,
models Mtb, Mth, Mbh, and Mtbh) are also proposed.

Only for model Mt are the samples independent. Local dependence is present for models Mb and Mtb;
heterogeneity arises for model Mh; and both types of dependences exist for models Mbh and Mtbh. For
any model involving behavioral response, the capture probability of any animal depends on its “previous”
capture history. However, there is usually no sequential order in the lists, so those models have limited use
in epidemiology. Models Mh and Mth are useful for epidemiological studies. Various estimation procedures
have been proposed[2,7,11–13,36].

As the CCV measures defined in Section 4.2 take into account both local dependences among lists and
heterogeneity among individuals, the sample coverage approach conceptually encompasses all ecological
models as special cases in model formulation. However, the inference procedures for the two approaches
are different. Under ecological models, natural time ordering or sequential ordering is incorporated,
whereas no ordering is considered in the sample coverage approach. Estimators for some ecological mod-
els can be computed from the R package SpadeR (species prediction and diversity estimation in R) which
can be freely downloaded from the author’s website at http://chao.stat.nthu.edu.tw/softwareCE.html.

5.2 Loglinear Models

The loglinear model approach is a commonly used technique for analyzing discrete data. Loglinear models
that incorporate list dependence were first proposed by Fienberg[37] for dealing with human populations.
Cormack[38] proposed the use of this technique for several ecological models.

In this approach, the data are regarded as a form of an incomplete 2t Contingency tables (t is the number
of lists) for which the cell corresponding to those individuals uncounted by all lists is missing. A basic
assumption is that there is no t-sample interaction. For three lists, the most general model is a model
with three main effects and three two-sample interaction terms. Various loglinear models are fitted to the
observed cells and a proper model is selected using deviance statistics and the Model Selection: Akaike’s
Information Criterion. The chosen model is then projected onto the unobserved cell to obtain the number
of missing cases.

Local dependences correspond to some specific interaction terms in the model. As for heterogeneity,
quasi-symmetric and partial quasi-symmetric models of loglinear models can be used to model some types
of heterogeneity, that is, Rasch Model and their generalizations[39]. As the quasi-symmetric or partial
quasi-symmetric models are equivalent to assuming that some two-factor interaction terms are identical,
the heterogeneity corresponds to some common interaction effects in loglinear models. Details of the
theory and development are fully discussed in two review papers[17,18].

Model selection in the loglinear models may be difficult because two equally fitted models might pro-
duce quite different estimates. An adequate fit to the observed cells may not necessarily imply an adequate
estimate for the count of the unobservable cell. Also, the existence of heterogeneity in data might result
in the lack of a reliable estimate[17]. As the number of lists increases, the number of adequate models
increases rapidly and thus model selection is a problem. In contrast, no model selection or model com-
parison is needed in the sample coverage approach; no further difficulty arises when the number of lists
increases.

6 Examples

The R package CARE1, available in the CRAN (Comprehensive R Archive Network) (http://cran.r-
project.org/web/packages/) and also in the author’s website, can be used to analyze epidemiological data
based on t incomplete lists of individuals, t ≥ 2. For t = 2, CARE1 computes the Petersen and Chapman
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estimator along with s.e. and confidence intervals. For t > 2, CARE1 provides three coverage-based
population size estimators and related statistics; the output also includes the results for any pair of sam-
ples. For t > 5, it may take longer running time due to the bootstrap procedures. Below we demonstrate
the application of CARE1 to two data sets (given in Tables 1 and 2) and interpret the results.

6.1 HAV Data (Low Overlapping Fraction)

The following steps show how to run CARE1 in R for three-list HAV data (given in Table 1) and the output.

# Install CARE1 package from CRAN

install.package(“CARE1”)

# Import CARE1

library(CARE1)

# Import HAV categorical data

df <- data.frame(P=c(1,1,1,1,0,0,0), 

Q=c(1,1,0,0,1,1,0), 

E=c(1,0,1,0,1,0,1), 

data=c(28,21,17,69,18,55,63))

# View import data

df 

P Q E data

1 1 1 1   28
2 1 1 0   21
3 1 0 1   17
4 1 0 0   69
5 0 1 1   18
6 0 1 0   55
7 0 0 1   63

# Transform summarized data to individual data

dat <- df[rep(1:nrow(df), time=df$data), -4]

# Transform observed data to CARE1 input format

HAV <- as.record(dat) 

# Print the CARE1 input format

HAV

001 010 011 100 101 110 111 
63  55  18  69  17  21  28 

# Main step to obtain population size estimates

CARE1.print(HAV)

# Output (three parts)

(1) NUMBER OF IDENTIFIED CASES IN EACH LIST: 
n1  n2  n3 

135 122 126 
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Note 1: Refer to Seber  (1982, pages 59 and 60) for Petersen estimator 

       and Chapman estimators as well as s.e. formula. 

Note 2: A log-transformation is used is used to obtain the confidence 

       interval so that the lower limit is always greater than the 

       number of ascertained; see Chao (1987, Biometrics, 43, 783-791)  

       for the construction of the confidence interval. 
 
(3) SAMPLE COVERAGE APPROACH:  

         M       D  Chat est   se cil   ciu 

Nhat-0 271 208.667 0.513 407   26 365   467 

Nhat   271 208.667 0.513 971  688 411  3778 

Nhat-1 271 208.667 0.513 508   53 425   636 
 
Warning: The estimated sample coverage (overlapping fraction is too) 

low, so Nhat is unstable.  

Warning: The estimated bootstrap s.e. of Nhat exceeds one-third of the 

population size estimate, so Nhat is unstable. 
 
Parameter estimates:  

         u1   u2   u3  r12  r13  r23 

Nhat-0 0.33 0.30 0.31 0.21 0.08 0.22

Nhat   0.14 0.13 0.13 1.89 1.57 1.91

Nhat-1 0.27 0.24 0.25 0.51 0.34 0.52
 
 
Definitions for the sample coverage approach: 
 
M: number of individuals ascertained in at least one list. 

D: the average (over all lists) of the overlapping cases. 

Chat: sample coverage estimate, see Eq. (14) of Chao et al. (2001).

est: population size estimate. 

se: estimated standard error of the population size estimate based on 

    the bootstrap method.   

cil: 95% confidence interval lower limit (using a log-transformation).  

ciu: 95% confidence interval upper limit (using a log-transformation). 

Nhat-0: population size estimate under independence assumption.  

Nhat: population size estimate for sufficiently high sample coverage  

      cases; see Eq. (16) of Chao et al. (2001). 

Nhat-1: one-step population size estimate for low sample coverage 

cases; 
        

see Eq. (17) of Chao et al. (2001).  

u1,u2,u3 etc.: estimated mean ascertainment probabilities depending on        

the estimate of N. 

r12,r13,r23 etc.: estimated coefficient of covariation (CCV) depending  

on the estimate of N. 

(2) ESTIMATES BASED ON ANY PAIR OF SAMPLES: 

Petersen Chapman se cil ciu

pair12      336     334 29 289 403

pair13      378     374 36 319 461

pair23      334     331 30 285 404

The first part of the output gives the number of identified individuals in each of the three lists. The
second part gives the Petersen and Chapman estimates along with s.e. and confidence intervals for any
pair of lists. These estimates can be used as preliminary analysis to detect possible dependence among
lists. As described in Sections 3 and 4, if a Petersen or Chapman estimate for two samples is relatively high
(low) compared to other pairwise estimates, then it reveals that the two samples are negatively (positively)
dependent. However, for the HAV data set, the Petersen and Chapman estimates for the three pairs of
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lists are in the range of 331 to 378. The narrow range of these estimates would not indicate the possible
direction of dependence at this stage.

The third part gives the coverage-based population size estimators along with related statistics. The esti-
mated sample coverage or overlapping fraction is Ĉ = 51.3% (Chat in the output), which is considered to
be low. The average (over three lists) of the overlapping cases is D= 208.667. If independence among sam-
ples is assumed, then a population size estimate would be N̂0 = D∕Ĉ = 407 (Nhat-0 in the output), with a
bootstrap s.e. 26 based on 1000 bootstrap replications. The 95% confidence interval lower limit (cil) is 365
and the upper limit (ciu) is 467. Even with the same input data, the bootstrap s.e. estimate and confidence
interval are likely to be different for replicated runs of CARE1 due to resampling variation in the bootstrap
procedures.

Incorporating the dependences between any two samples, we have N̂ = 971 (Nhat in the output), but
a large estimated bootstrap s.e. (688) renders the estimate useless. This extremely large s.e. also signifies
that these data with a relatively low sample coverage do not contain enough information to correct for
undercount or to provide an accurate population size estimate, and thus at best we can only provide a
minimum or maximum number for the population size.

CARE1 provides the estimated mean ascertainment probabilities 𝜇1, 𝜇2, and 𝜇3 (u1, u2, and u3 in the
output) as well as the estimated CCV measures 𝛾12, 𝛾13, and 𝛾23 (r12, r13, and r23 in the output) for all pairs
of samples. All these estimates depend on the value of N , and thus their estimates are given for each of the
population size estimates. Regardless of population size estimates, all numerical values consistently show
that the three lists have approximately the same mean ascertainment probabilities, and the CCV estimates
reflect positive dependence for any pair of lists. Consequently, the estimator N̂0 under the independence
assumption would generally underestimate. We recommend the use of N̂1 = 508 (Nhat-1 in the output)
as a lower bound, with an estimated s.e. of 53 with a 95% confidence interval (425, 636) based on 1000
bootstrap replications.

After the three surveys, the National Quarantine Service of Taiwan conducted a screen serum test for
the HAV antibody for all students of the college at which the HAV outbreak occurred. The conclusive final
figure of the number infected was about 545. Thus, this example presents a very valuable data set with
the advantage of a known true parameter. Our estimator N̂1 = 508 provides a satisfactory lower bound.
This example shows the need for undercount correction and also the usefulness of the capture–recapture
method in estimating the number of missing cases.

6.2 Diabetes Example (High Overlapping Fraction)

The following steps show how to run CARE1 in R for four-list Diabetes data (given in Table 2) and the
output. The explanation of the notation included in the output is omitted; see the HAV example for
details.

library(CARE1) 
 

# Import diabetes categorical data 

df <- data.frame (V1=c(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0),  
                 V2=c(1,1,1,1,0,0,0,0,1,1,1,1,0,0,0),  
                 V3=c(1,1,0,0,1,1,0,0,1,1,0,0,1,1,0),  
                 V4=c(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1), 

                 data=c(58,157,18,104,46,650,12,709,14,20,7,74,8,182,10))
# View import data 
df  
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pair12     2353    2351 58 2250 2478 
pair13     2185    2185 22 2146 2233 
pair14     2264    2261 88 2117 2468 
pair23     2060    2057 77 1922 2224 
pair24      806     803 47  725  913 
pair34     1558    1555 67 1445 1712 

(3) SAMPLE COVERAGE APPROACH:  
M       D  Chat  est se  cil  ciu 

Nhat-0 2069 1825.25 0.803 2272 25 2228 2328 
Nhat   2069 1825.25 0.803 2609 78 2477 2784 
Nhat-1 2069 1825.25 0.803 2458 50 2372 2568 

Parameter estimates:  
         u1   u2   u3   u4   r12  r13  r23  r14  r24  r34 
Nhat-0 0.77 0.20 0.50 0.08 - 0.03 0.04 0.10 0.00 1.82 0.46 
Nhat   0.67 0.17 0.44 0.07  0.11 0.19 0.27 0.15 2.24 0.67 
Nhat-1 0.71 0.18 0.46 0.07  0.04 0.12 0.19 0.09 2.05 0.58 

V1 V2 V3 V4 data 
1   1  1  1  1   58
2   1  1  1  0  157 
3   1  1  0  1   18 
4   1  1  0  0  104 
5   1  0  1  1   46 
6   1  0  1  0  650 
7   1  0  0  1   12 
8   1  0  0  0  709 
9   0  1  1  1   14 
10  0  1  1  0   20 
11  0  1  0  1    7 
12  0  1  0  0   74 
13  0  0  1  1    8 
14  0  0  1  0  182 
15  0  0  0  1   10 

# Transform summarized data to individual data  

dat <- df[rep(1:nrow(df), time=df$data), -5]   
 
# Transform observed data to CARE1 input format   

diabetes <- as.record(dat)  
 
# Print the CARE1 input format 

diabetes  

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  

  10  182    8   74    7   20   14  709   12  650   46  104   18  157   58  

# Main step to obtain population size estimates   

CARE1.print 

# Output (three parts) 

(1) NUMBER OF IDENTIFIED CASES IN EACH LIST:  

  n1   n2   n3   n4  

1754  452 1135  173  
 
(2) ESTIMATES BASED ON ANY PAIR OF SAMPLES:  

       Petersen Chapman se  cil  ciu 

(diabetes)
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The interpretation of all output is similar to that of the HAV data. We only briefly summarize the conclu-
sions. From the second part of the output, the Petersen and Chapman estimates for two pairs of lists, (2, 4)
and (3, 4), are substantially lower than the other pairwise estimates, signifying strong positive dependence
between Lists 2 and 4, and also Lists 3 and 4. This is also reflected by the relatively large CCV estimates
for 𝛾24 and 𝛾34 (r24 and r34 in the output). Thus, the population size estimator under the independence
assumption (Nhat-0 in the output) is not proper.

The sample coverage for these data is estimated to be 80.3%. As the coverage estimate is sufficiently high,
an accurate population size estimate is expected. The recommended estimate is N̂ = 2609 (Nhat in the
output) with an estimated s.e. of 78 using 1000 bootstrap replications. The corresponding 95% confidence
interval is (2477, 2784). See Chao et al.[22] for comparisons of these results with those obtained from the
loglinear models. The two approaches have different assumptions and different advantages and limitations.
A common limitation is that sufficient overlapping information is required to yield reliable population size
estimates. Otherwise, only a lower bound (for generally positively correlated samples) is useful as in the
HAV data.

Related Articles

Capture—Recapture Methods; Capture–Recapture Sampling Designs; Capture–Recapture Models,
Spatially Explicit; Capture—Recapture Methodology.
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