ON ESTIMATING THE PROBABILITY OF DISCOVERING A NEW SPECIES

BY ANNE CHAO

National Tsing Hua University, Taiwan

We search a population by selecting one member at a time with replacement and observing the species of each selected member. We are interested in predicting the conditional probability of discovering a new species in the next selection after \(n \) observations. The existence and asymptotic behavior of the uniformly minimum variance unbiased estimator of the unconditional probability is investigated under the condition that the species are uniformly distributed. We also compare the performance of the estimator as a predictor of the conditional probability with that of a linear unbiased predictor.

1. Introduction. In this note, we study mainly the same problem as in Starr (1979). Consider a population which consists of an unknown number of distinct species, possibly countably many. We search this population by selecting one member at a time, noting its species identity and returning it to the population. A search is called an \(n \)-stage search if \(n \) selections are made. Imagine that the species are labeled 1, 2, \(\cdots \) in any arbitrary fashion. Let \(p_i \) denote the probability that a randomly selected member belongs to the \(i \)th species, \(i = 1, 2, \cdots \) and let \(X^n_i \) be the number of representatives of the species \(i \) in the \(n \)-stage search. As indicated in Starr (1979), the conditional probability that we will discover a new species in the \(n + 1 \)st selection given the \(X^n_i \) is

\[
U_n = \sum p_i I(X^n_i = 0).
\]

The unconditional probability that at the last stage of an \(n + 1 \) stage search we will find a new species is equal to

\[
\theta_n = EU_n = \sum p_i (1 - p_i)^n.
\]

We are particularly interested in finding estimators of \(\theta_n \), which are to be used as predictors of \(U_n \). An estimator obtained by extending the initial search an additional stage has been discussed extensively in a number of previous papers, including Starr (1979) and Robbins (1968). Based on the search of size \(n + 1 \), the estimator is

\[
V_1 = q_1(n + 1)/(n + 1),
\]

where

\[
q_1(n + 1) = \sum I(X^n_{i+1} = k)
\]

denotes the number of species which have \(k \) representatives in the \(n + 1 \) stage search, \(k \geq 1 \). Robbins (1968) has shown that \(V_1 \) is a good predictor of \(U_n \) in the sense that

\[
EV_1 = EU_n = \theta_n, \text{ and } E(V_1 - U_n)^2 < (n + 1)^{-1}.
\]

Starr (1979) generalized \(V_1 \) to a class of estimators which he called Robbins-type estimators. In his study, the original search was extended by an additional \(m \) stages, \(m \geq 1 \). Starr

Received February 1980; revised January 1981.

Key words and phrases. Discovering species, asymptotic behavior, uniformly minimum variance unbiased estimator.

1339
showed that

\[V_m = \sum_{k=1}^{m} \frac{(m-1)}{(k-1)} \frac{q_k(n+m)}{\binom{n+m}{k}} \]

is that unique linear combination of

\[q_k(n+m) = \sum_j I[X_i^{n+m} = k], \quad k = 1, \ldots, n+m, \]

which has expectation \(\theta_n \).

Starr (1979, page 650) conjectured that \(V_m \) is the uniformly minimum variance unbiased estimator (UMVUE) of \(\theta_n \). In Section 2 we shall disprove Starr’s conjecture by obtaining the UMVUE of \(\theta_n \) for a special case. The UMVUE of \(\theta_n \) is further compared in Section 3 with Robbins’ estimator in the associated prediction problem.

2. Results. Assume that the initial search has been extended an additional \(m \) stages, \(m \geq 1 \). Let

\[d = d(n+m) = \sum_{k=1}^{n+m} q_k(n+m) \]

represent the number of observed species in the search of size \(n+m \).

Theorem 1. Suppose there are \(\mu \) species, \(\mu \leq n+m \), and \(p_1 = p_2 = \cdots = p_\mu = \mu^{-1} \). Then the UMVUE of \(\theta_n \), based on a search of size \(n+m \) is

\[W_m = W_m(d) = \sum_{k=0}^{m-1} \binom{m-1}{k} \alpha_{d-k,n+k} / \alpha_{d,n+m}. \]

where \(\alpha_{p,q} \) are the Stirling numbers of the second kind, \(p \leq q \), defined by \(x^q = \sum_{p=1}^\infty \alpha_{p,q} x^{\binom{p}{q}} \); if \(p > q \), we define \(\alpha_{p,q} = 0 \).

Proof. Under the specified condition, Harris (1968) showed that \(d \) in (1) is the complete sufficient statistic for \(\mu \). Thus, from the Lehmann-Scheffé theorem, we can conclude after some manipulations that the unique UMVUE \(W_m(d) \) of \(\theta_n \) is given by

\[W_m(d) = \sum_{k=0}^{m-1} \binom{n}{k} \frac{(-1)^{n-k} \alpha_{d-k,n+m}}{\alpha_{d,n+m}}. \]

The result follows directly from the following identity:

\[\sum_{k=0}^{m-1} \binom{n}{k} (-1)^{n-k} \alpha_{d-k,n+m} = \sum_{k=0}^{m-1} \binom{m-1}{k} \alpha_{d-k,n+k}. \]

See Chao (1980) for further details.

Remarks.

A. We can show that, based on the original search, no unbiased estimator which is a function of the complete sufficient statistic exists. Similarly, no such estimator can be obtained from a search of size less than \(n \).

B. If \(m = 1 \), the UMVUE of \(\theta_n \) can be written as

\[W_1 = 1 - d / \left(\frac{\alpha_{d,n+1}}{\alpha_{d,n}} \right), \]

with \(d = d(n+1) \) defined by (1). It is interesting to find that \(W_1 \) is analogous in form to \(U_n \) for the uniform case, since \(U_n = 1 - d(n) / \mu \), where \(d(n) \) is the number of
observed species in the initial search. Actually, according to a result provided in Harris (1968) for a sample of size \(n + 1 \), \(\alpha_{d,n+1}/\alpha_{d,n} \) is asymptotically the UMVUE of \(\mu \).

We now proceed to examine the asymptotic behavior of \(W_m \).

Theorem 2. If \(n \to \infty \) and \(\mu \to \infty \) in such a way that \(n/\mu \to \alpha \), \(0 < \alpha < \infty \), then with probability one,

\[
W_m = \exp(-R_m) + O(n^{-1}),
\]

where \(R_m \) is the unique solution of \(f(R) = R/(1 - \exp(-R)) = (n + m)/d, \ m = 1, 2, \ldots \).

Proof. It follows from the recursive formula of the Stirling numbers of the second kind (Jordan, 1950, page 169) that

\[
W_m = \sum_{k=0}^{m-1} \binom{m-1}{k} \left(\frac{\alpha_{d,n+k+1} - d\alpha_{d,n+k}}{\alpha_{d,n+m}} \right) = 1 - \frac{d\alpha_{d,n+m-1}}{\alpha_{d,n+m}} + Q,
\]

where

\[
Q = \sum_{k=0}^{m-1} \binom{m-1}{k-1} \frac{\alpha_{d,n+k}}{\alpha_{d,n+m}} - \sum_{k=0}^{m-2} \binom{m-1}{k} \frac{d\alpha_{d,n+k}}{\alpha_{d,n+m}}.
\]

Applying the results

\[
\frac{\alpha_{d,n+m-1}}{\alpha_{d,n+m}} = \frac{R_m}{n + m} \{ 1 + O(n^{-1}) \},
\]

\[
\frac{d\alpha_{d,n+m-1}}{\alpha_{d,n+m}} = \{ 1 - \exp(-R_m) \} \{ 1 + O(n^{-1}) \},
\]

which are deduced from a theorem of Harris (1968, page 841), we can establish that \(Q = O(n^{-1}) \). The result is immediate.

Starr (1979) found that the Robbins predictor \(V_1 \) has an unattractive property, namely that \(V_1 \) is strongly negatively correlated with \(U_n \). If we employ \(\exp(-R_m) \) as a predictor of \(U_n \), a similar drawback exists. The negative correlation can be explained in the following intuitive way: the more species we found in the search, the more likely we are to discover a new species in the next selection. Note that the negative correlations are asymptotic results. Therefore, we are essentially assuming that there are many species, so that the negative correlations can be reasonably understood. Numerical results indicate that \(W_m \) increases from 0 to 1 as \(d \) is increased from 1 to \(n + m \) for any \(\mu \). Then the negative correlation is still valid even if there are few species.

3. Comparison. We now compare the performance of \(W_1 \) as a predictor of \(U_n \) with that of \(V_1 \). It will be shown that \(W_1 \) is the better predictor in the sense that \(E(W_1 - U_n)^2 \) is asymptotically uniformly smaller than \(E(V_1 - U_n)^2 \). Robbins (1968) showed that

\[
(n + 1)E(V_1 - U_n)^2 \to f_1(\alpha) = e^{-\alpha}(1 + \alpha) - e^{-2\alpha},
\]

if \(n, \mu \to \infty \) such that \(n/\mu \to \alpha \), \(0 < \alpha < \infty \). Under the same conditions, we can establish that

\[
(n + 1)E(W_1 - U_n)^2 \to f_2(\alpha),
\]

where

\[
f_2(\alpha) = e^{-3\alpha}(1 - e^{-\alpha} - e^{-\alpha})^{-1} + e^{-\alpha}(1 - e^{-\alpha} - e^{-\alpha}) + 2e^{-2\alpha}.
\]
The proof of (2) is omitted, although the derivation is indirect. The reader is referred to Chao (1980, pages 13–16) for details.

We show that the UMVUE is also superior in the associated prediction problem by claiming that \(f_2(\alpha) < f_1(\alpha) \) for all \(0 < \alpha < \infty \). It is equivalent to verify that
\[
g(\alpha) = e^{-\alpha(2 + \alpha^2 - e^{-\alpha})} < 1,
\]
which follows from the fact that \(g(\alpha) \) is a strictly decreasing function on \([0, \infty)\) and consequently \(g(\alpha) < g(0) = 1 \), for all \(0 < \alpha < \infty \).

Although \(E(\hat{W}_1 - \hat{U}_n)^2 \) is uniformly smaller than \(E(V_1 - U_n)^2 \), we still do not know whether \(E(\hat{W}_1 - \hat{U}_n)^2 \) will attain the minimum in the class of all unbiased estimators of \(\theta_n \). We finally remark that \(E(V_1 - \theta_n)^2 - E(W_1 - \theta_n)^2 \) is asymptotically equal to \(E(V_1 - U_n)^2 - E(W_1 - U_n)^2 \). This fact reveals that the difference in variance when we employ the UMVUE, instead of \(V_1 \), to estimate \(\theta_n \) is essentially the reduction of mean square error if \(W_1 \), rather than \(V_1 \), is used to predict \(U_n \).

Acknowledgment. The author would like to thank referees for helpful comments.

REFERENCES

Institute of Applied Mathematics
National Tsing Hua University
Hsin-Chu, Taiwan